Algebraic Z-actions of Entropy Rank One
نویسندگان
چکیده
We investigate algebraic Zd-actions of entropy rank one, namely those for which each element has finite entropy. Such actions can be completely described in terms of diagonal actions on products of local fields using standard adelic machinery. This leads to numerous alternative characterizations of entropy rank one, both geometric and algebraic. We then compute the measure entropy of a class of skew products, where the fiber maps are elements from an algebraic Zd-action of entropy rank one. This leads, via the relative variational principle, to a formula for the topological entropy of continuous skew products as the maximum of a finite number of topological pressures. We use this to settle a conjecture concerning the relational entropy of commuting toral automorphisms.
منابع مشابه
ALGEBRAIC Zd-ACTIONS OF ENTROPY RANK ONE
We investigate algebraic Z-actions of entropy rank one, namely those for which each element has finite entropy. Such actions can be completely described in terms of diagonal actions on products of local fields using standard adelic machinery. This leads to numerous alternative characterizations of entropy rank one, both geometric and algebraic. We then compute the measure entropy of a class of ...
متن کاملN ov 2 00 2 ENTROPY GEOMETRY AND DISJOINTNESS FOR ZERO - DIMENSIONAL ALGEBRAIC ACTIONS
We show that many algebraic actions of higher-rank abelian groups on zero-dimensional groups are mutually disjoint. The proofs exploit differences in the entropy geometry arising from subdynamics and a form of Abramov–Rokhlin formula for half-space entropies. We discuss some mutual disjointness properties of algebraic actions of higher-rank abelian groups on zero-dimensional groups. The tools u...
متن کاملZeta Functions for Elements of Entropy Rank One Actions
An algebraic Z-action of entropy rank one is one for which each element has finite entropy. Using the structure theory of these actions due to Einsiedler and Lind, this paper investigates dynamical zeta functions for elements of the action. An explicit periodic point formula is obtained leading to a uniform parameterization of the zeta functions that arise in expansive components of an expansiv...
متن کاملPeriodic Point Data Detects Subdynamics in Entropy Rank One
A framework for understanding the geometry of continuous actions of Z was developed by Boyle and Lind using the notion of expansive behavior along lower-dimensional subspaces. For algebraic Z-actions of entropy rank one, the expansive subdynamics is readily described in terms of Lyapunov exponents. Here we show that periodic point counts for elements of an entropy rank one action determine the ...
متن کاملFe b 20 06 PERIODIC POINT DATA DETECTS SUBDYNAMICS IN ENTROPY RANK ONE
A framework for understanding the geometry of continuous actions of Z was developed by Boyle and Lind using the notion of expansive behavior along lower-dimensional subspaces. For algebraic Z-actions of entropy rank one, the expansive subdynamics is readily described in terms of Lyapunov exponents. Here we show that periodic point counts for elements of an entropy rank one action determine the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004